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Abstract. In contrast to theoretical expectations, experimental results at
√

s = 200 GeV for the reaction
γp → π0X show no evidence for odderon exchange. The upper limit on the cross section is an order
of magnitude smaller than the theoretical estimate. It is argued that chiral symmetry leads to a large
suppression, taking the theoretical estimates well below the data. Two additional arguments are presented
which may decrease the theoretical estimate further. The calculations are more sensitive to the assumptions
made in evaluating the hadronic scattering amplitude than in the processes considered previously and lattice
gauge calculations indicate that the odderon intercept may be appreciably lower than usually assumed.
These two latter effects are particularly relevant for the reactions γp → f0

2 (1270)X and γp → a0
2(1320)X

for which the data upper limits are also below the theoretical predictions, but not so dramatically as
for γp → π0X.

1 Introduction

The phenomenological pomeron has long been established
as an effective Regge pole with trajectory αpom ≈ 1.08 +
0.25t whose exchange governs high-energy diffractive scat-
tering [1]. There is no a priori reason why the phenomeno-
logical odderon, a C = P = −1 partner of the C = P = +1
pomeron, should not exist [2]. Indeed within perturbative
QCD, the odderon is rather well defined with an intercept
αodd(0) ≈ 1 [3]. For a general review of odderon physics
see [4]. Applications in the non-perturbative regime [5]
have assumed a “maximal” odderon with an intercept
αodd(0) = 1. The exchange of the phenomenological odd-
eron should produce a difference between pp and p̄p scat-
tering at high energy and small momentum transfer, a par-
ticularly sensitive test being provided by the forward real
part of the pp and p̄p scattering amplitudes. However, mea-
surements [6] are consistent with the absence of odderon
exchange and rule out the maximal odderon of [5], but not
necessarily models in which the forward real part vanishes
at large energy; see [7] for example. Another explanation is
provided [8] by the clustering of two quarks to form a small
diquark in the nucleon which has the effect of suppressing
the odderon–N–N coupling and completely so for a point-
like diquark. However if one (or both) of the nucleons is
transformed into an excited negative-parity state then the
odderon can couple without any restriction according to [8].
In contrast to the apparently “missing odderon” at very
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small momentum transfers there is experimental evidence
for C = −1 exchange at larger momentum transfers. The
pp and p̄p differential cross sections [9] differ markedly for
|t| ≈ 1.3 GeV2 in the ISR energy range. For still larger |t|
the C = −1 exchange is even supposed to dominate. We
shall discuss these two points in Sect. 4 below.

As an alternative to pp and p̄p scattering it was sug-
gested [10,11] that high-energy photoproduction of C = +
mesons, e.g. π0, f0

2 (1270) and a0
2(1320), with nucleon ex-

citation would provide a clean signature for odderon ex-
change. Specific calculation [12,13] predicted the following
cross sections at

√
s = 20 GeV:

σ(γp → π0X) ≈ 300 nb,

σ(γp → f0
2 (1270)X) ≈ 21 nb,

σ(γp → a0
2(1320))X) ≈ 190 nb. (1)

The experimental results at
√

s = 200 GeV for π0 [14],
f2(1270) and a2(1320) [15] are

σ(γp → π0N∗) < 49 nb,

σ(γp → f0
2 (1270)X) < 16 nb,

σ(γp → a0
2(1320)X) < 96 nb, (2)

all at the 95% confidence level. The model was based on an
approach to high-energy diffractive scattering using func-
tional integral techniques [16] and an extension [17] of the
model of the stochastic vacuum [18]. This model gives a
remarkably good description of many different processes
dominated by pomeron exchange [17, 19]. It is easily ex-
tended to odderon exchange and gives an odderon intercept
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αodd(0) = 1. The scattering amplitude T (s, t) is obtained
through a profile function J(b, s):

T (s, t) = 2is
∫

d2b exp(iq · b) J(b, s). (3)

The function J(b, s) is given in turn by the overlap of a
dipole–dipole scattering amplitude J̃(b, r1, r2, z1, z2) with
appropriate wave functions for the initial and final states:

J(b, s) = −
∫

d2r1

4π
dz1

∫
d2r2

4π
dz2

×
∑

Ψ∗
M (r1, z1)Ψγ(r1, z1)Ψ∗

p′(r2, z2)Ψp(r2, z2)

×J̃(b, r1, r2, z1, z2), (4)

where the sum corresponds to a summation over the flavour
and spin indices of the constituents in the wave functions
and the summation over the nucleon resonances and their
spins is implied in the cross section. In (4), b is the impact
parameter of two light-like dipole trajectories with trans-
verse sizes r1 and r2 respectively and z1, z2 are the longi-
tudinal momentum fractions of the quarks in the dipoles.
The physical picture is that the photon fluctuates into a
qq̄ pair; this is turned into the final meson M by the soft-
colour interaction J̃ , determined from other reactions [19]
and the proton is excited into an appropriate baryon reso-
nance. The nucleon and the baryon resonances are treated
as quark–diquark dipole systems. The wave functions au-
tomatically take into account helicity flip at the particle
and at the quark level and produce the correct helicity
dependence of dσ/dt as t → 0 for Regge-pole exchange.
The cross sections for π0, f0

2 (1270) and a0
2(1320) photo-

production were evaluated at
√

s = 20 GeV as that is the
energy at which the parameters of J̃(b, r1, r2, z1, z2) were
obtained. In elastic hadron–hadron scattering the increase
of the cross sections, together with the shrinking of the
diffractive peak, can be reproduced in this model by suit-
able scaling of the hadronic radii. The assumption that the
same radial scaling is relevant for the energy dependence
of the odderon contributions, leads to the photoproduction
cross sections scaling as (

√
s/20)0.3 and to an enhancement

of about 2 at
√

s = 200 GeV.
The results for diffractive dissociation depend much

more on the choice of wave functions than for elastic pro-
cesses. In the latter the overlap is essentially the density
and is constrained by the normalisation, which is not the
case for the former. The photon–meson overlap is tested to
some extent by the known radiative decays of the meson,
but there is no such test for the overlap between the proton
and the final baryonic state. Also, the odderon exchange is
much more sensitive to the parameters of the model than
is pomeron exchange; see Sect. 3 below. For these reasons
it was suggested [12,13] that the uncertainty in the model
calculation is at least a factor 2 at

√
s = 20 GeV.

The results (2) are well below the predictions (1), for
the π0 drastically so. Thus, from pp and p̄p scattering
as well as from meson production one concludes that the
odderon is apparently “missing” at small |t|. It is important
to understand why this may be so. In the following we
reconsider each part of the calculations of [12,13].
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Fig. 1. Diagrams of type a and b for the process γ(∗)p → A3X.
The full lines correspond to quark propagators in a given gluon
potential. The shaded blobs indicate the functional integration
over all gluon potentials with a measure including the fermion
determinant. For the process γ(∗)p → γ(∗)p replace A3 by γ(∗)

and X by p

2 Wave functions

Consider first π0 photo- and electroproduction at high en-
ergies,

γ(∗)(q) + p(p) → π0(q′) + X(p′), (5)

where X is a proton or a diffractively-excited proton state.
We shall argue that chiral SU(2) × SU(2) symmetry of
QCD, which is broken only by the small u and d quark
masses, leads to a large suppression factor for this reaction.
A detailed account of this will be given in [20]. Here we
only outline the arguments.

Real and virtual Compton scattering,

γ(∗)(q) + p(p) → γ(∗)(q′) + p(p′), (6)

were investigated in [21, 22] using exact functional tech-
niques. A classification of diagrams into seven types a to g
(see Fig. 2 of [21]) was given. The diagrams of types a and
b, which are the relevant ones for our discussion here, are
as shown in Fig. 1 of the present paper with A3 replaced
by γ(∗) and X by p. The diagram types are distinguished
by the topology of the quark loops and the placing of the
photon coupling on them. It was argued in [21, 22] that
at high energies the diagrams of types a and b are the
leading ones.

Now one can use PCAC (partial conservation of the
axial current) to relate reaction (5) to a process very similar
to (6) where the final state γ(∗) is replaced by the third
isospin component of the axial current, A3

µ, and the final
state proton by X:

γ(∗)(q) + p(p) → A3(q′) + X(p′). (7)

The isotriplet of axial currents is

Aa
µ(x) = q̄(x)γµγ5

τa

2
q(x), (8)
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where a = 1, 2, 3, τa are the Pauli matrices and

q(x) =
(

u(x)
d(x)

)
(9)

is the quark field operator. The well-known PCAC rela-
tion is

∂λAaλ(x) =
fπm2

π√
2

φa(x), (10)

where φa(x) is a correctly normalised pion field and
fπ =̃ 0.93mπ is the pion decay constant. By PCAC the
amplitudes of the reactions (5) and (7) are related by

iq′
µMµν(A3; q′, p, q) (11)

= − fπm2
π

2πmp

√
2

1
q′2 − m2

π + iε
Mν(π0; q′, p, q).

Here mp is the proton mass and we extrapolate the am-
plitude for (5) from on shell pions, q′2 = m2

π, to arbitrary
q′2 ≤ m2

π. One can then show the following: At high ener-
gies the diagrams of types a and b shown in Fig. 1 are the
leading ones for reaction (7).

For simplicity we discuss in this note only the isospin-
symmetry limit, that is we set for the current quark masses

mu = md ≡ m̂. (12)

The quark loop attached to the current A3
µ in Fig. 1b must

then vanish, since τ3 is the only non-trivial flavour ma-
trix in this loop and tr{τ3} = 0. Thus we find: In the
isospin-symmetry limit the diagrams of type b vanish for
the reaction (7) and, using (11), also for pion production
(5).

A more involved analysis is necessary for the diagrams
of type a . Using PCAC (10) one can show the follow-
ing [20]: The diagrams of type a when inserted in (11) give
a contribution to the π0 amplitude which is proportional
to m̂, that is to the current quark mass.

The current quark mass is proportional to m2
π in the

chiral limit (see for instance (8.1) of [23])

m2
π = 2m̂B , B = − 2

f2
π

〈0|ūu|0〉. (13)

Typical values for m̂ and B at a renormalisation scale of
1 GeV are m̂ = 7 MeV, B = 1.4 GeV.

Thus we find that the amplitude for (5) is proportional
to m2

π, that is it vanishes in the chiral limit. To estimate
the actual suppression factor κ in the amplitude relative
to a naive estimate, such as the one given in [12], we argue
as follows. To get a dimensionless factor we divide m2

π by
a typical hadronic squared mass scale, say m2

p, and write

κ =
m2

π

m2
p

h. (14)

Here h should be of order 1 but could be numerically large,
for instance h = mp/fπ =̃ 7. Putting everything together
we estimate for the suppression factor

0.02 � κ � 0.15,
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Fig. 2. A specific diagram of type b for γ(∗)p → f0
2 X

5 × 10−4 � κ2 � 0.02. (15)

That is, the cross section for γp → π0X should be sup-
pressed at least by a factor ≈ 50.

Thus one shortcoming of the calculation [12] for γp →
π0X is that the π0 wave function used did not properly
take into account the constraints from chiral symmetry.
This clearly reduces the theoretical prediction for (5). Of
course, other effects, as discussed in this note, may reduce
the theoretical estimate further.

What can we say about f0
2 and a0

2 production? We note
that the f0

2 (1270) is an isoscalar, the a0
2(1320) an isovector

particle. One can again make a general analysis in terms
of diagram types, replacing A3 in Fig. 1 by appropriate
tensor currents. Here we only note that in the isospin-
symmetry limit the same arguments as given for the A3

µ

case above show that diagrams of type b cannot contribute
to γ(∗)p → a2X but can contribute to γ(∗)p → f0

2 X. A
simple diagram of this type is shown in Fig. 2. Thus, if for
some reason diagrams of type a in Fig. 1 are suppressed also
for tensor meson production, then a0

2 will be suppressed but
f0
2 need not be. Data [15] may give a hint in this direction.

3 Soft-colour interaction

The functional approach to quantum field theory has
turned out to be a most effective one for investigating
non-perturbative effects in QCD. In it the expectation val-
ues of field operators are expressed as functional integrals
over the classical fields, where the weight of the configura-
tion is given by the exponential of the QCD action. This
functional integration takes into account the quantum fluc-
tuations. The short-range fluctuations can be calculated
with the help of perturbation theory, but for a treatment of
the effects of long-range fluctuations numerical simulations
or model assumptions are necessary.

The stochastic vacuum model (for a review see [24]) is
one such approach to non-perturbative QCD. It assumes
that the long-range fluctuations can be approximated by
the only functional integral which is analytically accessible,
namely a Gaussian functional integral (Gaussian process).
The Gaussian approximation is defined through the cu-
mulant or linked-cluster expansion [25] of the expectation
value of several fields. If all cumulants containing more
than two fields are neglected we are left with Gaussian
integrals and all expectation values can then be expressed
through products of the expectation value of two fields,
the so-called correlator.

In a theory where the variables of the functional inte-
gration, that is the classical fields, commute, the Gaussian
approximation is uniquely defined. In a non-Abelian field
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theory this is not the case, since there are several cumulant
expansions possible and the truncation of them leads to
different Gaussian approximations. An additional compli-
cation is induced by the dependence on the path connecting
the space-time points of the two fields of the correlator.
This path has to be introduced in order to ensure gauge in-
dependence.

For the investigation of the forces between two quarks
and in particular for confinement, the expectation value of
a single Wilson loop has to be calculated. In that case the
so-called van Kampen cumulants are a natural choice for
the expansion and the truncation of it leads to a Gaussian
integral. This allows the approximate evaluation of expec-
tation values of a single Wilson loop. This choice, together
with the assumption that the paths mentioned above have
no influence on the correlator, led to several highly desir-
able results [24]. In particular we see the following.
(1) A non-Abelian gauge theory like QCD shows confine-
ment. In order to obtain confinement in an Abelian gauge
theory monopole condensation has to occur.
(2) When lattice results for the fundamental correlator are
inserted, the string tension comes out to have the correct
phenomenological value. Furthermore it is proportional to
the Casimir operator of the representation of the Wilson
loop, a result which is also in good agreement with lat-
tice calculations.

These results support strongly the Gaussian approxi-
mation. Also the relativistic spin- and velocity-dependent
terms of the interquark potential, as obtained from the
model, are in agreement with phenomenology.

In order to evaluate hadronic scattering amplitudes the
expectation value of at least two Wilson loops has to be
calculated [17]; this follows from the formalism developed
in [16]. However the functional integration variables in the
expansion used for the evaluation of one loop cannot be
used in that case. Therefore two new different cumulant
expansions have been used, a simple expansion method
and a more sophisticated super-cumulant method, as ex-
plained in detail in Chapt. 8.5 of [1]. Both these cumulant
expansions differ from the one used for the evaluation of a
single loop. Hence the Gaussian approximations made for
the single loop and that made for scattering processes are
not the same. The details are discussed in [24,26,27].

Nevertheless the modified model with the same input
parameters for the correlator gives very satisfactory results
for scattering and production processes where pomeron
exchange is dominant. With only a few parameters a whole
range of experimental results could be reproduced and even
predicted [1,19]. The model can also be applied to processes
which can only occur via the exchange of a C-odd state,
for instance the photoproduction of neutral pions, and is
at the core of the predictions of [12, 13]. The fact that
the predicted cross section for γp → π0X is an order of
magnitude larger than the upper limit of the experimental
cross section for this reaction forces us to consider possible
sources of error in the extended stochastic vacuum model.
It was already mentioned that the underlying cumulant
expansions used for the evaluation of scattering amplitudes
are different from those used for the evaluation of one
loop. For definiteness we call the cumulants of the latter

W-cumulants and those of the former S-cumulants (for
scattering). Only the correlator (the cumulant of two fields)
is the same in all expansions. The vanishing of the higher
W-cumulants does not imply the vanishing of the higher
S-cumulants.

Scattering processes with pomeron (C-even) exchange
are dominated by the expectation value of a product of
four gluon fields that is reduced to the product of two
correlators. The success of the model for these processes
shows that the cumulant of four fields is indeed not only
small for the W- but also for the S-expansions. For C-odd
induced processes the leading term is the expectation value
of a product of six fields. In the model it is factorised to
a product of three correlators. This factorisation is only
justified if additionally the S-cumulant for six fields is small.
It should be noted that the two S-expansions mentioned
above do not differ in the cumulant of four fields but do in
that of six fields, hence the S-cumulant of six fields cannot
vanish in both S-expansions. Thus a possible explanation
for the discrepancy between the theoretical expectation
(1) and the experiment (2) is a large S-cumulant of six
fields compensating the product of the three correlators to
a large extent. This is independent from the wave function
effects discussed in Sect. 2.

Lattice calculations could provide a test for this hy-
pothesis of a large S-cumulant of six fields [28]. The lead-
ing term for the difference between expectation values of
a product of parallel and antiparallel Wilson loops is the
expectation value of six fields. Comparison between model
and full lattice calculations can therefore test directly the
factorisation hypothesis without involving the folding with
hadron wave functions which always occurs in the evalua-
tion of scattering or production processes.

4 Energy dependence

There is no a priori justification for the assumption that
the odderon trajectory should match the pomeron trajec-
tory nor, in particular, that their contributions to elastic
processes should have the same energy dependence. There
is some evidence that they may indeed be different. The
differential cross sections of elastic pp and p̄p scattering at√

s = 53 GeV are different in the region of |t| = 1.3 GeV2,
the pp data having a marked dip which is not present in the
p̄p data. This difference must be due to C = −1 exchange
and is the only real experimental evidence for the existence
of the odderon. The data can be fitted by including, in ad-
dition to the usual pomeron and other Regge poles, the
maximal odderon [5] or three-gluon exchange [7] which is
closer in spirit to the perturbative odderon than to the non-
perturbative odderon of [5] or the odderon of [29]. Indeed,
in [29] the odderon contributions to pp and p̄p scattering
were calculated treating the impact factors (wave func-
tions) with the same methods discussed above for single-
meson photoproduction. The proton was still considered as
a quark–diquark system but now the diquark was assumed
to have an average size 〈d〉. It was shown in [29] that for
〈d〉 = 0 the odderon effects in pp versus p̄p at |t| ≈ 1.3 GeV2

vanish in accordance with [8] and that the data [9] could
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Fig. 3. Pomeron and odderon trajectories from lattice gauge
theory. The data points are from [31]

be reproduced with a – very reasonable – average diquark
size 〈d〉 ≈ 0.22 fm.

The pp data at large |t| appear to be essentially energy
independent for 27.4 ≤ √

s ≤ 62.1 GeV and, in both mod-
els [5] and [7], are primarily odderon exchange. If the odd-
eron is considered as a Regge pole then the near-constancy
of the pp large-|t| cross section requires the maximal odd-
eron to have a very flat trajectory. See [4] for a full discussion
of these points.

However, a rather different picture emerges from lattice
gauge theory [30, 31]. In [31], the lightest J = 0, 2, 4, 6
glueballmasses have been calculated in theD = 3+1SU(3)
gauge theory and extrapolated to the continuum limit.
Assuming that the masses lie on linear Regge trajectories,
the leading glueball trajectory is found to be α(t) = (0.93±
0.024) + (0.28 ± 0.02)α′

Rt, where α′
R ≈ 0.9 is the slope of

the usual mesonic Regge trajectories. Thus this glueball
trajectory has an intercept and slope very similar to that
of the pomeron trajectory, αpom ≈ 1.08 + 0.25t [1]. The
states one might expect to lie on the odderon trajectory are
the lightest JPC = 1−−, 3−−, 5−−, . . .The lattice results
for 1−− and 3−− define a trajectory with a slope similar
to the pomeron but with a very low, negative intercept.
These results are shown in Fig. 3. A similar conclusion
about the odderon trajectory is reached in [32] but from a
very different standpoint. As the glueballs on the pomeron
trajectory are two-gluon states and those on the odderon
trajectory are three-gluon states, that the latter is low-
lying is not surprising in a constituent-gluon picture as
the effective gluon mass ∼ 1 GeV. If this is the correct
interpretation of the lattice calculations, then it completely
destroys the odderon exchange model used to calculate π0,
f0
2 (1270) and a0

2(1320) photoproduction.
However there is an alternative explanation of the lat-

tice result for the odderon. If the leading trajectory has
an intercept around unity then the lightest 1−− glueball
cannot lie on it but will lie on a subleading trajectory.
Drawing a linear trajectory from J = 1 at t = 0 through
the mass of the lightest 3−− glueball gives a slope about

half the slope of the pomeron trajectory. The ambiguity
would be removed if the mass of the lightest 5−− could be
calculated. This alternative explanation does not have a
significant effect on the calculation of [12,13].

5 Conclusions

We have presented three arguments highlighting aspects
of the predictions [12, 13] for odderon exchange in photo-
production which may have been too optimistic. These are
the role of wave functions and in particular the effect of
chiral SU(2) × SU(2) symmetry, the possible breakdown
of the factorisation procedures used in calculating the in-
teraction and uncertainties in the energy dependence of
odderon exchange. The first of these leads to a large sup-
pression for the reaction γ(∗)p → π0X and can account
for the large discrepancy between the data [14] and the
original predictions. The other two aspects of the calcula-
tion are less quantifiable, but could provide an explanation
of the discrepancies between prediction and experiment
in the reactions γp → f0

2 (1270)X and γp → a2(1320)X.
Both the factorisation procedure and the assumption on
energy dependence are amenable to being checked by lattice
gauge calculations.
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